Role of Src in Vascular Hyperpermeability Induced by Advanced Glycation End Products

نویسندگان

  • Weijin Zhang
  • Qiulin Xu
  • Jie Wu
  • Xiaoyan Zhou
  • Jie Weng
  • Jing Xu
  • Weiju Wang
  • Qiaobing Huang
  • Xiaohua Guo
چکیده

The disruption of microvascular barrier in response to advanced glycation end products (AGEs) stimulation contributes to vasculopathy associated with diabetes mellitus. Here, to study the role of Src and its association with moesin, VE-cadherin and focal adhesion kinase (FAK) in AGE-induced vascular hyperpermeability, we verified that AGE induced phosphorylation of Src, causing increased permeability in HUVECs. Cells over-expressed Src displayed a higher permeability after AGE treatment, accompanied with more obvious F-actin rearrangement. Activation of Src with pcDNA3/flag-Src(Y530F) alone duplicated these effects. Inhibition of Src with siRNA, PP2 or pcDNA3/flag-Src(K298M) abolished these effects. The pulmonary microvascular endothelial cells (PMVECs) isolated from receptor for AGEs (RAGE)-knockout mice decreased the phosphorylation of Src and attenuated the barrier dysfunction after AGE-treatment. In vivo study showed that the exudation of dextran from mesenteric venules was increased in AGE-treated mouse. This was attenuated in RAGE knockout or PP2-pretreated mice. Up-regulation of Src activity induced the phosphorylation of moesin, as well as activation and dissociation of VE-cadherin, while down-regulation of Src abolished these effects. FAK was also proved to interact with Src in HUVECs stimulated with AGEs. Our studies demonstrated that Src plays a critical role in AGE-induced microvascular hyperpermeability by phosphorylating moesin, VE-cadherin, and FAK respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats.

Dysfunctional endothelium is associated with and, likely, predates clinical complications of diabetes mellitus, by promoting increased vascular permeability and thrombogenicity. Irreversible advanced glycation end products (AGEs), resulting from nonenzymatic glycation and oxidation of proteins or lipids, are found in plasma, vessel wall, and tissues and have been linked to the development of di...

متن کامل

High Mobility Group Box Protein 1 Boosts Endothelial Albumin Transcytosis through the RAGE/Src/Caveolin-1 Pathway

High-mobility group box protein 1 (HMGB1), an inflammatory mediator, has been reported to destroy cell-cell junctions, resulting in vascular endothelial hyperpermeability. Here, we report that HMGB1 increases the endothelial transcytosis of albumin. In mouse lung vascular endothelial cells (MLVECs), HMGB1 at a concentration of 500 ng/ml or less did not harm cell-cell junctions but rapidly induc...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

STAT5 activation induced by diabetic LDL depends on LDL glycation and occurs via src kinase activity.

Advanced glycation end products (AGEs) have been implicated in the accelerated vascular injury occurring in diabetes. We recently reported that LDL prepared from type 2 diabetic patients (dm-LDL), but not normal LDL (n-LDL) triggered signal transducers and activators of transcription STAT5 activation and p21(waf) expression in endothelial cells (ECs). The aims of the present study were to inves...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015